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sSummary

This reporp is intended to introduce and partially survey
aspects of statistical filter theory and its relationship to
space navigation problems. Space navigation dynamics are gener-
ally represented by non-linear systems. There afe methods by
which certain non-linear systems maj be approximated by linear
systems, and thus, the results applicable to linear systems may
be employed. Attention will be directed primarily to the details
of multivariable linear filter theory and reference will be given
to the linearization problems.

This material may be of interest to persons of varied back-
grounds and interests. In general, the interest of an individual
may be in a brief survey. This individual is suggested to follow

outline one as given below. In the event of interest in a more

detailed investigation, outline two may be followed. A brief

survey reQuires a minimun background in differential equations,
mat rix theory, elementary mathematical statistics, and naviga-
tional terminology. Whereas, the detail investigation is pred-
icated on knowledge of linear algebra, systems theory, mathematical
statistics, probability theory, and navigational problems.

The authors acknowledge the assistance of Mrs. Ann Elliott,

the typist.



OQutline 1 Outline 2
Section 1 Section 1
Secgion 2A Secf&on 2
Secfgon 3 Secﬁgon 3
Litgfature Secf&on b
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Abstract

The Mathematics Department of Clemson University under NASA
contract NAS8 - 11259 investigated aspects of statistical filter
theory. The investigation included abstracting selected reporté
pertaining to R. E. Kalman's statistical filtering technique and
developing a mathematical model to illustrate and study applica-
tions of statistical filtering. This investigation brought out

certain areas in which further study may be beneficial.
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1. History and Introduction

Classically, the problem of fitting a curve to a set of data
points was attacked by the method of least squares. The under-
lying concept of the least squares method is that the fitted
curve is selected in such a manner that the sum of the squares of
the deviations of the data from the curve is minimized. This
technique does not take into account the fact that some of the
data may be more accurate than the other data. But thlis method
is still very useful in many experimental problems.

The least square method may be modified to incorporate sta-
tistical information about the accuracy of the data, i.e., the
data is weighed with regard to the associated statistics.

Usually a curve is fitted to the data with each information par-
ticle incorporated via considerations regarding the related var-
iance and covariances, along with the square of its deviation
from the fitted curve. It differs from the usual least squares
technique in this evaluation criteria, thus, the name weilghted
least squares is usually assigned.

In the general situation of data filtering, the information
inputs may be treated as random variables or as deterministic
values contaminated with random noise. That is, instead of fit-
ting a curve, the basic signal of a known form is assumed to be
corrupted with noise and it is desired to extract the signal by a
linear system with minimum error in accordance with a chosen loss
criteria. In his ploneering work Weiner [6] showed that the gen-
eral problem of detecting a signal in the presence of random

noise lead to the so called Weiner-Hopf equations. In particular,



the solution consists of a systematic method for determining the
weighing function of a linear system that is optimum in the sense
that the mean-square error between the actual output and the de-
sired output is\minimized, i.e., the statistical information of
the inputs give the weighing function that yields an output
differing with minimum mean-square error from the output of the
noise free system. Varlous extensions of this theory have been
developed, but the application of the solution is usually handi-
capped by many practical considerations.

An alternate approach to the linear filtering problem was
formulated by Kalman [ 3 ] utilizing state space methods and linear
dynamic systems. Thils new approach is especially significant.
First of all in the previous theoretical structures the complete
state vector is assumed to be available for use in the calculation,
but this seldom is the practical case and measurements of only a
few of the state variables may be available. The Kalman approach
is able to process incomplete state variable data. Secondly, the
Kalman approach adapts quite readily to computational routines.
The Kalman approach is the main consideraton of this report and
it will now be treated in considerable detail.

To adequately define the problem and solution, some basic
terminology will be introduced. The notation will be identical
with Kalman[ 3] except where indicated. The equations will be
referred to via the sectionally sequential numbers in parentheses
and the numbers as given by Kalman [3] will be enclosed in braces

for cross reference purposes.



A system is a mathematical abstraction that is devised to
serve as a model for a dynamic phenomena. The inputs represent,
in the form of a set of time functions or sequences, the external
forces that are acting upon the dynamic phenomena. The outputs
represent the measures of the directly observable behaviour of
the phenomena. The state of a dynamic system at time t is a set
of numbers, called state variables, such that the knowledge of the
numbers and the input will, with the equations describing the
dynamics, provide the future state and output of the system. The
set of all time values for which the inputs, the states, and the
outputs are defined is termed the time space. If the time space
is continuous, the system is known as a continuous time system.
If the input and the state vectors are defined only for discrete
instants of time'tk, where k ranges over the integers, the time
space is discrete and the system is referred to as a discrete-
time system.

A linear continuous time dynamic system may be described in

general by the vector differential equation

dx(t)/dt = F(t)x(t) + D(t)u(t) (1.1a) {12,[ 3 ]}
and
y(t) = M(t)x(t), (1.1b) {12, [3]}

where x(t)l is a state n-vector, u(t) is an input m-vector (m < n)

1
Lower case letters will be used to indicate column vectors and
upper case letters will be used to indicate matrices.



F(t) and D(t) are n x n and n X m matrices respectively.
Finally,'y(t) is an output p-vector of the system; and M(t)
is an n x p matrix (p < n).

A linear discrete time dynamic system may be described by
the vector différence equation

x(t + 1) = o(t + 1; t)x(t) + a(t)u(t) (1.2a) {14, [ 3]}
and
y(t) = M(t)x(t). t =0, 1, 2, ... (1.2b) {14, [3]}

Here ¢(t + 1; t) is the transition matrix of the eQuation (1.2a)
and the matrix A(t) is of dimension of n x m. This is a particular
formulation of a‘discrete system in which the observations are
measured at integer values. 1In general thé discrete system does‘
not have to be integer valued or equally spaced. It 1s noted at
this point that Kalmén [7T] gives a precise mathematical defini-
tion of a dynamical system and he gives conditions for when equa-
tions (1.l1la) and (1.1b) represent a linear continuous time dynam-
ical system.

In practical considerations of noise as related to discrete
linear systems, the general structure may be investigated by
three different associated methods of approach. Kalman [ 3 ] form-
ulates his system with the linearly related output and fandom
additive excitations in the linear system, i.e., the relationships
are

x(t + 1) = ¢o(t + 1; t)x(t) + u(t), (1.3)

y(t) = M(t) x(t).



Solloway [1] in his system formulation has additive random errors
in his observations and no additive random excitation in the
linear system, i.e., the relationships are

x(tn N 1) = o(t, 4 13 tn) x(tn),
(1.4)

y(tn) = M(tn) X(tn) + u(tn).

A more general approach is given by Joyce [8] and Leibelt
and Bergson [U4] in which there is additive randomness in the linear
system and observations, i.e., the relationships are given by

x(t

no+ 1) = et s BxGE), (1.5)

(b, 4 1) = M5 )x(6 ) + viE )

The basic mathematical and statistical approaches in deriving
the optimal filters also varied. Kalman derived hls filter for an
optimality criterion of minimum mean square error, using an orthog-
onal projection technique, while Solloway derived his results from
the viewpoint of a minimum variance estimate.

Optimality criteria are basically dependent upon the concept
of loss fﬁnctions. Intuitively, a loss function assigns a pen-
ality to the error made in estimation. A loss function L gener-
ally is a function of the difference ¢ between the gquantity to‘be
estimated and the estimator. Formally, a loss function should be
characterized by the following properties;

(1) L(0) = 0,

(i1) L(el) < L(e2) for 0 < eq £ €5, (1.6)
(1ii) L(e) = L(-¢).
For example, a popular loss function is L(e) = 52.




In the employment of a loss function, L(e), a particular
problem could be to derive a solution that would minimize the ex-
pected loss, i.e., the expectation of the loss function. Such a
solution would be termed an optimal solution. This concept will

be used and further explained in the subsequent derivation.



2. The Fillters
, 5
A. Problems and Solutions.
Kalman's statistical filter is a particular formulation of a
solution to the Weiner problem. Kalman [3] expresses the under-

lying situation as a dynamic model
x(t + 1) = o(t + 1; t) x(t) + u(t), (2.1) {16,[3]}
y(t) = M(%) x(t), (2.2) {17,031}

where u(t) is an independent normally distributed random process

of n-vectors with zero mean and covariance Q(t), x(t) is an n-

vector, y(t) is a p-vector (p < n), and o(t + 1; t), M(t) are

n xn and p x n respectively with elements as non-random functions

of time. The prdblem is to find an estimate, x*(t + 1 | t) of

x(t + 1) which minimizes the expected loss; given the observed

values y(to), ..., y(t) that are assumed to be linearly independent.
The loss function is assumed to satisfy the formal charac-

terization of a general loss function as given in (1.6). The

assumed normal distribution hypothesis implies that the optimal,

estimate would be the same as if the optimal estimate was restrict-

ed to a linear function of the observed random variables and a

loss function L(e) = 52.

Kalman's solution is an iterative scheme. The estimate

x¥(t + 1 | t) of x(t + 1) minimizes the expected loss and it is



based on the observed outputs, y(to), y(tl), ., y(t). This

estimate satisfies a dynamic system

x¥(t + 1 | t) =e®(t + 1; t)x¥*¥(t | t - 1) + A¥(t)y(t),
(2.3) {21,013}
where for t » &
AR(t) = o(t + 13 £) PE(T)M'(t) M(E)P*(£)M*(t) ~2,
(2.4)y 28,0 3]}
O¥(t + 1; t) = ¢(t + 1; t) - A¥(L)M(t).

(2.5) {29,031}
The error in estimation % (t + 1 | t) satisfies the system

g(t + 1 ] t) = o¥(t + 1; t) x(t | t - 1) + u(t).
(2.6) {23,[3]}

The covariance matrix of the error in estimation is P¥*¥(t) and it

satisfies the recursion formula

P¥(t + 1) = o%(t + 1; t) P*(t)o'*¥(t + 1; t) + Q(t).

(2.7) {30,[3]}

A basic underlying assumption is that an estimate at time'
to,i(to),and the associated covariance matrix of the error in
estimate is known. This is necessary to initiate the iterative
process in Kalman's solution. Kalman also assumes that the ex-
pected value of the error, in the original estimate, X(to), is
zero, i.e., E[x(to)] = 0. The covariance matrix of the error in

the original estimate, is P¥(t,) = E[x(t %' (t ).

1The prime notation on a matrix is used to indicate the transpose.
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Solloway's model for the dynamic system 1s given by
x(tn+l) = @(tn+l; tn) x(tn), (2.8a)
y(e ) = M(s, ) x(t ) + ult,), (2.8b)

where u(tn) is an independent random process of p-vectors with

zero mean and known covariance matrix, Q(tn), i.e.,
= ]
Q(t,) = E [ult, ) u'(t )],
E [u(t) u'(tn)] =0, n#m
E[u(tn)] = 0 for all n.

The problem is then: to find an updated estimate i*(tn) of
the state x(tn) by using the observation y(tn) and an estimate
i(tn) based on the observationsry(to), y(tl), cees y(tn_l). The
covariance matrix P(tn) of the error in estimate x(tn) is assumed
to be known. The criteria used in establishing the updated esti-
mate X*(tn) is to minimize the trace of the covariance matrix

El{x(t ) - #*(t Y}Hx(t ) - 2*(t)}']).

The solution of Solloway's model can be represented by

k(£ ) = %(t_)+B(t N’ (6 ) (M(5IP(t M (b )+t )7 (7 (e )-F(E))

where (2.9)
9(t,) = Mt IRt )), (2.10)
x(v ) = e(t 5 t ) RE(E 1) (2.11)
P(t ) = o(t 5 & ) P¥(t _de'(t s £ 1) (2.12a)

._9..



The covariance matrix, P*(tn), of the error in the estimate is

BR(tn) = P(t,) = PO6 M (6,) (M(6 DP(E M (£) + Q)7 Mt )P(t ).
(2.12b)

An initial estimate X(to) and the covariance matrix P(to) of the
error in the estimate is required to initiate the iterative scheme.
A computer orientated flow chart of the Solloway solution is
illustrated in Figure 1. Notice that the step-wise estimation
scheme requires knowledge of the linear dynamic system. This in-
volves knowing the transition matrix, the mapping matrix and the
covariance matrix of the additive random errors in the observations.
In Figure 1, the observation schedule consists of the time to’ tl,

.y t at which the observations will be made.

n,
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(gr2) uoTaenbyg UT USATH TSPOW SY3 JO UOTINTOS 8Yj J0J 3JdBYD MOTH T 2an3T4

BUTI84TTY

(BgT1'z) uoTgenbs £q AMHMme
(T1°2) uotaenbs £q ( 1) X
r9gndwo)

1

Ac MH+vae :oandwo)

%

u
(qgT*c) uotgenbs Ag ( 2)xd
(6°2) uotgenbs £q ("1)gx

:sqnduo)
I

Ava% 19Ad8S8qQ

ON

T 4+ U =
3911

u

1

(0T*2) uotsenbs £q A:pvh :aqnduwo)

i

0 = U 399

*aTnpayos
COﬂp.m\wawmQO
()N (2)D

“(®°1yq <(Y2)x
:peay

-11-



B. Kalman's Derivation

There are notation conventions and definitions necessary
for the derivation of Kalman's filter. The derivation 1is given
in the framework of linear spaces generated by random variables.
The observed random variables are treated within the linear mani-
folds that they generate, and the optimal estimates are express-
ed as orthogonal projections on the manifolds.

The linear manifold generated by the random variables
y(to), ..., y(t) is denoted by ’Lj(t). When the observable
vy(t) is a p-vector, the linear manifold @j(t) is the set of
all linear combinations of all component of the vectors

(tg)s -oes ¥(t), 1.e.,

E

where yj(i) is the jth component of y(i).

W e~act

a..y.(d
) 1JyJ(1)

i to J
Let U and V be linear manifolds such that U is contained
in V. A vector x of V is said to be orthogonal to the linear
manifold U if and only if x is orthogonal to every vector of U.
Furthermore, any vector w of V may be expressed uniquely as
Yy + z with y an element of U and z orthogonal to U. For the
vector w, the y satisfying the equation w = y + z 1s termed
the projection of w on U.
The orthogonal projection of the random variable x(t+l)
on 'Ef(t) is denoted as x(t+l | t) and the component of
x(t+1) orthogonal to TJ (t) is denoted as x(t+l | t). When

x(t+1) is an n-vector the projection of x(t+1) on the mani-

-12-



fold 1‘(t) is considered to be a component-wise projection,
i.e., the 1th component of x(t + 1 | t) is the projection of

the ith component of x(t + 1) onto %l(t). The vector

y(t | £t - 1) which is the component of y(t) orthogonal to
WJ (t - 1) generates the linear manifold Z(t). Given lj (t)
the optimal estimate of x(t + 1) is denoted by x¥(t + 1 | t) and
the error in this optimal estimate is denoted by x(t + 1 | t).

The derivation of Kalman's version of the Wiener problem
depends on a well known theorem [9] from probability theory.
The theorem is stated without proof: Let {x(t)}, {y(t)} be nor-
mally distributed random processes with zero mean, i.e.,
E[x(t)]1 =0, E[y(t)]1 =0 for all £t. Then the optimal estimate,
x*¥(t+1|t), of x(t + 1) given the observations y(to), ooy y(t), is
the orthogonal projection, x(t+1l]|t), of x(t+1l) on @j(tﬁ.

An alternate notation for x¥(t + 1 | t) which illustrates
the dependency of the optimal estimate on the linear manifold
Y () 1s Elx(s + D] Y1) 1.

Assume 1j(t - 1) is known and the random variable, y(t),
at time t is observed. The orthogonal component §(t | £t - 1)
will generate the linear manifold ;E(t). The linear manifold-
WA (t) is the same as the one obtained by the direct sum of
Ej(t - 1) and Z (t). This is illustrated in Figure 2. By
the definition of £ (t) every vector in £(t) is orthogonal to
every vector in U (¢t - 1).

Now the linear manifold %j(t) is the direct sum of ff(t ~ 1)

and Z (t) and thus,

-13-




: x*¥(t + 1 | ©) EA‘,[x(t+1)|'\.J(t)]
Erx(t + 1) q (t - 1) ]+ B x(t + 1) Z t)].

(2.13)

This means that the orthogonal projection of x(t + 1) on
qj (t) can be\expressed as the sum of the orthogonal projec-
tion x(t + 1) on 1j(t - 1) plus the orthogonal projection of
x(t + 1) on Z(t). This is illustrated in Figure 3.

Now using the inductive assumption that x*¥(t | t - 1) 1s
known, equation (2.13) can be written as

x¥(t + 1 | t)

i

Blo(t + 15 £)x(t) + u(t)| Y (¢ - 1) ]
+57 x(t + 1) Z (&)
= o(t + 13 ) Elx(£)|Y(t - 1)) |
Elu(t)] Y (¢ - )]+ Elx(s + 1) ZE ()] (2.18)
{18, [ 3]}
= et + 13 6) k¥ (e |t - 1)+ Bue)| Y (b~ 1))
+ Bl x(t + 1) Z (5)].
This results follows by noting that an orthogonal projection
of a linear combination of two vectors is the same linear com-
bination of the projection of the individual vectors.
Since the input is an independent random process, the vector
u(t) is independent of all the previous noise vectors. In parti-
cular, u(t) is independent of u(t - 2), u(t - 3), ., and there-
fore, by equations (2.1) and (2.2) u(t - 2) affects x(t- 1) which
in turn affects y(t - 1). But u(t) is independent of u(t - 2)

and consequently, y(t - 1) is independent of u(t). 1In a like

14—
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manner, u(t) is independent of y(t - 2), y(t - 3), .... As noted
y(t = 1), y(t - 2), ..., y(to) generates the linear manifold
\j (t - 1). Therefore, u(t) is independent of’y (t - 1). Since
Elfu(t) ] = 0, for all t and since u(t) is independent of @’(t - 1)
u(t) is orthogonal to the linear manifold 1{(t - 1), i.e., each
component of u(t) is orthogonal to ll(ﬁ - 1). Therefore,
Elu(t)| Y (¢t - 1)1=0 (2.15)

Since E[x(t + 1)| Z (t)] is the orthogonal projection of
x(t + 1) on Z(t) which is generated by y(t | t - 1) the pro-
jection must be a linear operation on y(t | t - 1), i.e.,

Elx(t + D Z (£) 1= a%(t)y(t | £ - 1), (2.16){ 19, [3 ]}
where A¥(t) is an n x p matrix.

The representation of y(t) is

y(6) =yt | t - 1) +3(c | ¢ - 1)

where y(t | t - 1) is a unique element of Qf(t - 1).
Express x(t) as x¥(t | t - 1) +[ x(&) - x¥(¢t | ¢t - 1) ],
and use equation (2.2) to obtain

y(tlt-1) + y(tlt-1)

M(t)x*(t|t-1) + M(t) [ x(t) - x¥(t|t-1)]

M(t)x¥(t|t-1) +M(t) x(t|t-1). (2.17)
Consequently, y(t|t-1) = M(t)x*(t|t-1) since M(t)x*(t|t-1) is the

component of M(t)x(t) in @{(t—l).

Hence, y(t|t-1) = y(t) - y(t|t-1)

y(t) - M(t)x*(t|t-1). (2.18) {20, 3}
By substituting equations (2.15), (2.16), and (2.18) into equation
(2.14)
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x¥(t + 1 | £) = o(t + 1; t) x¥(¢ | t - 1)

+A¥(t)[y(t) - M(t)x*(t | t - 1))

o¥(t + 1; t)x¥(t | t - 1) + a¥(t)y(t)
(2.19) {21,103}
where
o%¥(t + 1; t) = o(bt + 1; t) - A¥(t)M(t). (2.20) {22, 31}
Note that equation (2.19) represents a linear dynamic system.
A linear dynamic system also governs the estimation error,

i1.e.,

x(t +1 | €) =x(t +1 ] t) - x¥(¢t +1 | t)

$(t + 13 t)x(t) + u(t) - o%(t + 1; t)x*(t | t - 1)

1l

~A¥(E)M(t)x(¢t)

=le(t + 15 t) - A®(£)M(t)]x(t)
-o%(t + 15 t) x*(t | t - 1) + u(t)

= ¢¥(t + 1; t)x(t) - o¥(t + 1; t) x¥(t | t - 1)
+ u(t)

= o¥(t + 1; t) [x(t) - x*¥(t | t - 1)1+ u(t)

o*(t + 1; t)x(tlt - )+u(t)  (2.21) (23, [ 3]}
The Efu(t)] = 0, thus equation (2.21) gives

E[x(t + 1 | t)] = o*(t + 1; t) E[X(t | t - 1)]. (2.22)

Now, a sequence of steps utilizing the dynamic system within the

right hand side of equation (2.22) gives E[x(t + 1 | t)] as a pro-

duct of multiple transition matrices and E[i(to)]. The expected

value of the error in the original estimate, E[i(to)], is assumed

to be zero, consequently,

Elx(t + 1 ] t)] = 0. (2.23)
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Equations (2.21) and (2.23) yield a recursive relationship
for the covariance matrix P*¥(t) of the error x(t | t - 1).

P#(t + 1) = E[x(t + 1 | t)x'(t +1 | )1

o¥(t + 1; t) Elx(t | ¢t -— 1)X'(t | £ = 1)) o*'(t + 1; t)+Q(t)

o¥(t + 1; t)P¥(t) o*'(t + 1; t)+Q(t) (2.24) (24, [3]}
where Q(t) = E[u(t) u'(t)].

The remainder of the derivation requires an explicit formula
for aA¥(t).

Since x(t + 1 | t) is orthogonal to y(t | t - 1), it
follows that

E[x(t + 1 | ©yy'(t | £ - 1) 1= 0.
Expressing x(t + 1 | t) as ,
x(t + 1] t) = x(t + 1)-E[x(t + 1)[1{ (t - 1)] -E[x(t + 1)] EE(tﬁl
(2.25)
and employing eqﬁation (2. 16)
0 = E[(x(t + 1)-El x(t + 1)] Y (t - DI-a¥%(t)y(e | & - 1INyt | & - 1)]
= Elx(t + 1)y'(t | t - 1) -E[ B[ x(t + 1)] j/(t - DIyt | £t - 1))

-A%¥(t) Ely(t | t - 1) §'(¢ (2.26)

t
|
-
N>
—_

Because E[x(t + 1)i’q (t - 1)) and '(t | £t - 1) are
orthogonal, it follows that in equation (2.26)

B Elx(t + 1) Y (¢ - W't | t - 1) = o.
The orthogonal projection of x(t + 1) ontc>1{ (t = 1) is denoted
by x(t + 1 | t - 1), which is equal to E[x(t + 1)] Yt - 1],
Since x(t + 1 | t - 1) is in the linear manifold Ut - 1); it is

orthogonal to Qﬁ(t). The error in the projection of x(t + 1)
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onto U (t - 1) is denoted by x(t + 1 | t - 1). See Figure 4.
Thus, x(t + 1) = x(t + 1 | t = 1) + x(t + 1 | t - 1).
From (2.26) and (2.17)
0=El(x(t +1 ]t -1) +x(t+1]¢t-1Ny' ¢t |t-1]
—a%(t) E[M(E)X(t | t - D)M(t)x(t | t = 1))'].
Since x(t + 1 | t - 1) is orthogonal toZ(t) and by equations
(2.1) and (2.2), and the definition of P¥(t),
0 =Elx(t +1 | t - 1)y'"(t | t - 1)] =a%(£)M(E)P*(t)M'(t)
= E[{o(t + 1; t) x(t | t = 1) + u(e)ix'(t | t - 1IM'(¢t)
—A¥(t)M(t)P*(t)M' (t).
= o(t + 1; t) P¥(t)M'(t) - A¥(t)M(t) P*(t)M'(t).
The explicit formula for A¥(t) is
AR(t) = o(t + 1; t)P¥(L)M' (b)Y M(t)P*(£)M'(£)] ~%. (2.27) 125, [3]}
The inverse will exist since P*¥(t) is positive definite and
M(t) is a p x n (p < n)matrix of rank p.

Thus, the solution given in Section 2 A is now verified.

21~




3. Example

At this time an example will be presented to illustrate the
concepts previously discussed. A dynamic system will be constructed
in such a mannef that statistical filtering techniques could be
immediately applied. The model with additive noise in the observa-
tions is employed since it is more applicable to trajectory analysis.
Approximation techniques in the transition matrix are introduced to
provide an avenue for investigating an application in which the
hypotheses of the theory are not completely satisfied.

The basic mathematical model is that of a particle in force
free flight on.a parabolic curve in the x-y phase plane. With
this model, the statistical filter is used to estimate the posi-
tion and velocity of the particle (i.e., the state of the dynamic
system). |

Whenever possible the notation of Section 2 will be used.

The following standard notation will be needed;

X = dx/dt,

¥y = dy/dt,

X = dzx/dt2,

]

v d2y/dt2,
y (M) o gny /gen no=1, 2, 3, +..
The basic parametric equations which describe the motion of

the particle are chosen to be:

x(t) 1 + at,

t>0 (3.1)

y(t) 1 + b/t ,

where a and b may be considered as orbital parameters and the
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independent variable t is considered as time. From equation

(3.1),
X = a,
y = b/(2Vt),
x = 0,

x(£) = x(t), x,(t) = y(£), x3(t)

(3.2)
b/ (ut372y = —5/(2t).

Choosing the components of the system to be the quantities

x(t), and x,(t) = 3(t);

equations (3.1) and (3.2) produce a force free linear, time variant

dynamic system

x(t) = F(t) x(t) (3.3)
where
x(£) = (x7(6), %,(8), x3(6), x ()" = (x(t), y(&), X(8), y(E))',
x(£) = (xq(£), x,(8), X3(8), X, (8))' = (x(£), y(&), K(£), ¥(E))',
and
0 0 1 O
0O 0 0 1
F(t) = : (3.4)
0O 0 0 O
0 0 0 -1/(2t)

The next problem in working with a dynamic system is to

determine the state transition matrix, that is the matrix, o(t; to),

that relates the state vector at time to to the state vector at

time t. More precisely one needs to determine a matrix ¢(t; to)

such that x(t) = ¢o(t; to) x(to).

This problem is fundamental in the theory of dynamic systems
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and can generally be solved 1n several ways, some more appropriate

than others. The initial step in determining the transition matrix

is to solve the system of differential equations given in equation

(3.3). In many.cases the solution must be obtained by numerical

methods. In this example, an analytic solution is easily obtained.
The general solution of equation (3.3) 1is

x(t) = A(t)c, for all t >0 (3.5)

where
t 1 0 0
1
0 0 2t 1
A(t) = (3.6)
1 0 0 0
-1
0 0 £t 0
and c' =(Cl’ Cos C3» CM)’ a vector of arbitrary constants.

Given an initial condition x(to) for the state vector, the
technique is to solve for the arbitrary constant ¢ and thus,
eliminate ¢ in equation (3.5).

Since A(t) is non-singular for t > 0, the inverse of A(t)

! exists and is

0 0 1 0
i 1 0 -t 0
A (t) = 1 . (3'7)
0 0 0 £
0 1 0 -2t

In equation (3.5) allow t to be equal tO'tO and multiply on the
left by A‘l(to) to obtain

c = A‘l(to)x(to). (3.8)
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Substituting equation (3.8) into equation (3.5) gives
x(t) = A(E) ATH(6 )x(E,). (3.9)

Equation (3.9) shows that A(t)A-l(to) is a transition matrix.

Let
i _ -1
o(t; t ) = A(E)A ~(t )
1 0 t-t, 0
1
0 1 0 2(t t_)2-2¢
= © °1 . (3.10)
0 0 1 0
0 0 0 (t,/t)°
Thus, x(t) = e(t; t )x(t ). ’ (3.11)

At this stage the transition matrix given in equation (3.11)
is limited to relating the state vector at to to the state vector
at time t. In using the transition matrix it is desirable to have

@(tz; tl), t, 2 tl > 0, that is, a matrix satisfying the relation-

ship

X(t2) = @(t2; tl)x(tl).
The transition matrix o(t; to) possesses three properties:
Property (1) |

-1

o “(ty t ) = et 5 t) (3.12)
This is easily derived: Since

. = -1
o(t; to) A(t) A (to),

the inverse of &(t; to) exists. Thus,

¢_1(t; ) 1

-1 -
(A(E)ATH(5.))

A(tO)A‘l(t)
= @(to; t).

The expression for @(tz; tl)’ is derived before proceeding

-25-




with the remainding two properties.

By equation (3.11)

X(t2)\= ¢(t2; to) X(to) (3.13)
and x(tl) = @(tl; to)x(to).
Since Q_l(t; to) exists

- o~ 1 .
X(to) = ¢ (tl, to)x(tl). (3.14)
Substituting (3.14) into (3.13) gives
- ] -1 .
x(t2) —@(tz, to)¢ (tl. to) x(tl)
= ¢(t2; to)¢(to; tl)x(tl).

Furthermore,

@(tg; tl) = ®(t2; to)c(to; tl)
_ -1 -1
= A(t,)ATT(E,) A(E) ATT(t;)
_ -1
= A(ty) ATT(t))
1 0 ty-t, 0
0 1 0 2(t.t.)% -2t
= 172 L1, (3.15)
0 0 1 0
i
0 0 0 (t,/t,)7

Property (2)

t) =98(t,; )

@(t2; tl)Q(tl; o

since

1]

@(tg; tl)é(tlg t )

-1 -1
o A(t2)A (tl)A(tl)A (to)

A(tz)A_l(to)
= @(tzg to).

Property (3)
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since

o (ty5 to) H(

t.)

A(to) A” o

= I,
where I is the identity matrix.
Reviewing, the particle in force free fight is represented
by the set of differential equations given in equation (3.3),
where F(t) is given in equation (3.4). The state transition matrix

for any two times t2 and t, is given in equation (3.15).

1

Now to further study the behavior of this dynamic system, an
approximate transition matrix is developed. In physical problems
approximations of the equationé of motion are employed, thus this
approximation illustrates this means of analysis.

The two main tools used in this development are Taylor series
expansions and a recursive relation between y(n)(t) and y(t).

Notice in equation (3.2) ¥(t) = 0 and consequently, all the
higher derivatives of x(t) with respect to the independent variable
t will be zero. This is not true for y(t).

In equation (3.2)

£~ N\

vty = -y B ey/(et)

1}

()2 L(1)s~ (2D (D) gy (3.16)

It follows from equation (3.2) that

73 () = (=3/2) (“x)p~5/2

(=313 (1) £~ B Dy Mgy,

By mathematical induction, it follows that
n - -(n-
(™M) = (™ L(2n-3) (2n-5) ... (3) (DT Py ey (3.17)
Equation (3.17) represents a recursive formula for the nth deriva-

tive of y(t) with respect to the independent variable in terms of
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(1)

y (t). This formula will be used in the Taylor expansion of y(t).
One form of the Taylor series expansion is:

f(x + h) = E n? £ (xy/m1
n =20

Since y(t) satisfies the hypothesis of Taylor's theorem, for

y(tz) = y(t1+ h)

(o]

=n§O (b, - )™ (6 )/mr. (3.18)

Substituting equation (3.17) into equation (3.18) gives

y(t,) = y(t )+ Zl(tz—tl>“<-z>“‘l<2n—3>(2n—5>...(3)<1>tl‘<n'1)y(1’<t1>/n:.

n
(3.19)
For convenience equation (3.19) will be written as
y(ty) = y(e) + y (6 Sty £)), (3.20)
where S(tg; t,) = tq nzl ((t2—tl)/tl)n(—%)n_l(2n—3)(2n—5)...(3)(1)/n!.
(3.21)

It is easy to verify by D'Alembert's ratio test that this
serles 1s absolutely convergent for t, < 2t . and tl < t,.
Analogous to equation (3.20), the relationship in equation

(3.17) gives a Taylor series expansion

y(t,) = y(tIR(E,; ) (3.22)
where
R(t,; tq) = nzo ((t,=t )/t (-%)"(2n-1)(2n-3)...(3)(1)/n!.
(3.23)
R(t,; t;) is absolutely convergent for t, < 2t, and t; < t,.

Define for k > 1
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((t,-t)/t)) (=) 1 (2n-3)(2n-5)...(3)(1)/n!

K
Spltps t9) =ty 1
n=1
(3.24)
and
K
. = N, 140 - - 1
R (to; tq) = nzo ((t,-t1)/ty) (%) (2n-1)(2n-3)...(3)(1)/nt .

(3.25)
One can approximate y(tz) to any degree of numerical accuracy by
equations (3.18) and (3.24) with an appropriate‘choice of k.
Likewise j(tz) can be approximated as close as desired.

The approximate transition matrix is defined as

1 »0 t,-t 0
. . 0 1 0 Sty tq)
o (tys ty) = |
0 0 1 0 _
(3.26)
0 0 0 Ry(t,; tq)

It should be noted that the approximate ¢ matrix @k(t2; tl)
does not have all of the properties of the exact transition matrix.
For instance, in the approximate matrix,

o (tos to) # o (ty5 t1)e (B3 t4).

. (
Consequently, some of the error in the estimation is due to the
matrix ®k(t2; tl) and not the filtering procedure.

The dynamic system also includes the equation which connects
the observable vector y(t) and the state vector x(t), i.e.,

y(t) = M(£)x(t) + u(t) (3.27)
where, M(t) 1s the mapping matrix and u(t) is a vector of random
"noise" or errors whose statistics are known.

Efu(t)] = 0 and Efu(t)u(t)'] = E[{y(t) - M(t) x(t)H{y(t)-M(t)x(t) }']=Q(t).

Computer studies are now being conducted to evaluate the results
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obtained by using the approximate transition matrix in the statis-
tical filtering scheme illustrated in Figure 1. Preliminary data

indicates that under certain conditions the results are very good.
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4. Conclusions and Future

In summary, a basic conclusion is that a Kalman type fil-
ter gives the "best" minimum variance estimator when the hy-
potheses of the  theory are satisfied. Other statistical
techniques will also yield a minimum variance estimator. But,
a Kalman type filter routine is an updating process; conse-
quently, it has certain advantageswhen considered in regard
to computational requirements. The advantages are, in partic-
ular, smaller core storage needs and smaller matrix inversions.

In non-linear application problems, a Kalman type filter
may be employed under the provision that the non-linear struc-
ture‘is linearized about a refefence. This application is
reasonable when the deviates from the reference to the actual
trajectory that forms the mathematical model of the linear
system are small. In some problems an updating routine to
produce new references is needed to keep the deviates within
the required bounds.

Future study is needed to inVestigate questions that
arise in application techniques. These questions are mainly
in regard to the linearization processes and computor calcula-
tions. In structure these may be classified as being in
three areas: the first area is the effect of the linearization
of a non-linear process; the second area is computational
effects within calculations of the transition equation; and
the last general area is the effect of the measurement func-

tions, its linearization or deficiencies in the calculations.
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The philosbphy of this further study should be directed toward
the effects of utilizing the mathematical theory in situations
where thé hypotheses of the structure are not completely satis-
fied.

The authors of this report feel that these questions can
be investigated via the avenue of simple mathematical models.
The goal of these investigations would be to gain insight into
the effect of failing to satisfy particular hypotheses of the
theory. In particular, these investigations could involve
the following points: the updating schedule of the reference
in the linearization of a non-linear problem, the propagation
of errors, the overall effect of observation increments, and
the requirements associated with‘non—linear measurement func-
tions. For example, a task problem could be to structure a
non-linear mathemétical model--linearize tﬂe model and apply
a Kalman type filter, then use a non-linear filter that has
been approximated for computational purposes. This comparison
could generate considerable insight. Also in some application
problems the covariance matrix goes negative definite, an
impossibility when all the hypotheses are satisfied. The
model could also be structured in such a manner that a hint

toward the reason for this dilemma could be found.
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Abstracts of Selected Reports

The following are abstracts of references [1]’,[5]’ noj,
and [12]. The abstracting of these articles was prescribed
by the contracting agency as one of the'objectives of the
contract. In this section the equation numbers in braces re-

fer to the corresponding equation in the paper being abstracted.
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J P L Space Programs Summary No. 37-21, B. Dynamic Filter-
ing, [ 11

The author of this article attempts to clear—up some of the
difficulties in reading and understanding R. E. Kalman's original
paper [ 3] concerning a particular formulation to the solution of
the "Wiener Problem." The level of abstraction of the artiéle
is reduced considerably compared to Kalman's paper.

By using varied mathematical assumptions, the author is able
to obtain equivalent equations by a less abstract method. The
"optimization" is based on the following theorem.

Given two vectors of random variables, say x and y, with

zero mean vectors; Ay = E[xx'], Ay = Elyy'], and Ayx = E[yx'],
the "best" linear estimate of y, say y, given the value of x is
. -1
y = AyXAX X. \ {1}

"Best" means that in the class of ail linear estimators (linear

~

functions of the known vector x) y has the covariance matrix with

minimum trace.

Letting Q=E[(y - ¥)(y = §)'], the "minimized" covariance
matrix of y is given by

= - 2
U ,Ay Ayx Ay Axy' {2}

The author uses this theorem to solve the following problem.
Let the dynamic equations of the mathematical model be expressed
by

x(t

= ¢(tn+l; tn) x(tn), {31}

M(tn) x(t ) +ult), {4}

n+1)
y(tn)
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wWhere

x(tn) = state vector at time t ..,

M(tn) = mapping matrix,

@(tn+l; tn) = transition matrix,

y(tn) = observables of the system,

u(tn) = random noise with zero mean vector and covariance

matrix Q(tn).
Basically, the problem is, how does one obtain a "best" esti-
mate of the error, at time t_,,, that is, i(tn+1), when

~

x(t

il

x(t

n+1’ n+1) = X(Epip)o

E(tn+1) = Q(tn+1; En) x*(E)s
and x*(tn) is the best estimate of x(tn) based on the observations
y(tl), ceny y(tn_l).

The answer to the above problem is found by using equation {1}.
That is, one needs to find corresponding terms in the right hand
side of the equation {1}. The author does this using only elemen-
tary statistics and matrices.

The development has two basic steps. The first step is the

prediction of the state of the system X at the next time

n+l
step tn+1 based on a best estimate of x*(th) of the current state,
using only the observations y(tl), ceey y(tn_l).

The second step is correcting the predicted state, after tak-
ing the measurements at time t - The "updating" procedure in step
two uses the stated theorem.

The remainder of the article is mainly concerned with develop-

ing recursive formulas for updating the covariance matrix of the
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estimate Xn+1‘

The notation in this article is essentially that of Kalman's

original paper [3].




An Introduction to Midcourse Navigation-Guidance, Autonetics [5]7.

This report is written with respect to the on board system
philosophy. The midcourse navigation guidance problem is composed
of; the trajectory determination problem,the attitude determina-
tion problem, the prediction problem, and the trajectory control
problem. These problems are well defined in the’report. The
Kalman filter is used for the trajectory determination problem
and as a starting point for trajectory control.

The Kalman filter is discussed mainly in chapters two and
three. The notation 1is essentielly that of Kalman's. A heuris-
tic derivation of Kalman's filter is presented. There is also
a development (not found in the other reports abstracted) of
asymptotic cases. Asymptotic cases arise when the predictions
are poor and the observations godd;'and when the predictions are
good and the observations bad.

The author assumes (i) the space craft 1s sufficiently close
to the reference trajectory (this means linear perturbation methods
may be used), and (ii) the derivation state 1is measured relative
to the reference trajectory.

The mathematical model utilized is
yn = Mn X, {2.1}

X = ¢ X+ A u

n+l n+t+l, n “n ntl, n n’ t2.2}

where Yo = observation residuals vector for the nth navigation-

guidance cycle,

>4
1]

n position-velocity deviation state vector at the beginning

_37_




— o r—— ————

of nth cycle,

M_ = matrix relating current position-velocity deviation to

observation residuals,

¢n+1 N = statg transition matrix,
u, = control function (velocity correction),

boy1 .p = matrix relating control function at n*h step to control
>

function at n+lSt step.

It should be noted that X is a deviation state vector and that Yq
is a residual vector. Equation {2.1} is used for the trajectory
determination problem, i.e., estimate Xy given I

The heuristic developmentrof the Kalman filter assumes

) {3.3}

Vo=V

| - ® (9 -t
g = ek (y Y5

*
where w. is a weighing filter. This equation means that the best

n
estimate of the nth observation residuals can be equated to the
best predicted observation residual §é, plus an optimizing filter
matrix w: times the difference between the measured and predicted
observation residuals, (§n - ﬁﬁ). That is to say, the best esti-
mate of the difference betweeh the observation residuals is equal
to the optimal weighing function w; times the difference between
the measured and predicted values.

The objective 1s to choose ﬁn so that its difference from
the actual observation residual, Yo is minimized according to some
loss criterion. The loss criterion used to compute‘wg is the mean
square deviation. TFor convenience, Autonetics minimizes the trace

~ A

of the covariance of (9n - Y. In minimizing the trace then,

heuristically, the covariances are reduced. Minimizing the trace
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leads to results in terms of covariance matrices.
The optimal filter is found to be

= oy 1 ) ' v -1
w, = Clax)) MP[M c(a x!) M) +C (Ayn)]. . {3.22}

An alternate form can be expressed as
P—— ~ =1 ~1 ~ =1
= 1. ' 1
w, = [c(ax!)™ + M) clay )™~ M ] M C(ay,)- {3.23}

Conditions are stated for eqﬁivalenée of {3.22} and {3.22} in
appendiva.

The optimal estimate trajectory deviation equation can be
expressed as a single recurrence relation,

x = (I - W, Mn) (Qn,

n A

' A -
n-1 + n—l) Kn-l + “n yn'

This result anticipates the nature of the bptimal control u

a {3.21}

n, n-1

n-1
at the beginning of the (n—l)th cycle.

An alternate form of {3.21} is given by

%, = reCax)™h + MocCay )T M T ocar) T &L+ My ooCay )7 0.
{3.26)

In this form, the two inputs to the optimal estimate computa-
tion are the predicted estimate xﬁ weighted by the covariance
of the prediction error plus the observation'data yn‘weighted
by the covariance of its errors. |

Asymptotic'cases are discussed and put in tabular férm.
If the covariance of the errors in the prediction is large,
i.e., the prediction is poor, then C(Aié) >> C(Aﬁn).' Symbol-
ically the inequality means diagonal elements are large. If
the prediction is reliable but the observation errors are
large then C(A&n) >> C(Aié).

Autonetics not only discuss the asymptotic cases but also
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emphasize the differences between the even-or-over detérmined
set of observations and the under-determined case. Basically,
the decision depends upon the quality of the curreﬁt set of
observation residuals. From the computational point of view,
the under-determined case leads to inversions of matrices of
orders less than 6.

There are many typographical mistakes in the.Autonetics

report and caution should be used, especially in the asymptotic

cases.
Definitions
. . A, - L
Clax' ) = E[(xé - xp (%] - xﬁ)']‘= covariance matrix on dispersion
of predicted estimate,
- . - A, -~ A
C A = - 4 —_ ' - . L3
( y) E[(yn vy (¥, yn) ] covariance matrix on observation
errors,
aﬁ_l = control filter and is defined by the equation
- s
Yn-1 4n_1%n-1-
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The Application of State Space Methods to Navigation Problem,

Technical Report No. 4, Philco Western Development Laboratories,

[10].

The topic of main concern is determining the state of a
system; therefore, the material on pages 36 through 56 of the
above mentioned technical report will be considered. This
material is directly concerned with the derivation and appli-
cation of the Kalman statistical filter.

This section is prefaced with the following remarks. The
material immediately preceding this section of the report in-
troduced the standard statistical terms such as expected
value, density function, and multivariate normal (Gaussian)
distribution. The covariance matrix, P, introduced on page
31 in defining the multivariate normal distribution must be
a positive definite matrix. Thé fact that P is positive definite

will play an important role in the development of the Kalman

filter.

Because of insufficient observable quantities and the in-
accuracy in measurements, it is necessary to "smooth" the
observed data, that is "filter" out the "noise" in the observa-
tions. This means that the data must be processed in such a
way so as to remove or eliminate the effect of the random er-
rors. R. E. Kalman [3] derived a method of solving this
problem for linear systems and others [2], [11] were able to

develop a technique to apply Kalman's solution to non-linear
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systems.

This technique needs an initial estimate of the state of
the dynamic system and a covariance matrix for the error in
this estimate. \The report presents one method of obtalning
the initial estimate, the method of "least squares fit to a
polynomial."

To derive the least squares equations, the "gradient"
was Iintroduced.

Suppose n observations of a variable X(t) are taken

(i.e., X(tl), X(t2), cees X(tn) ) and X(t) is to be represent-
ed as a polynomial of degree m < n in t. That 1is
= 2 m
X(tl) Yy + vy tl + Yo tl + + ym tl s
= . 2 m
X(E5) = yg ¥ ¥y Ep F Y, 87 F e Hy T,
— 2 m
X(tn) =Y, + Yy tn + Yo tn + +ym N s

or representing these equations as a matrix equation

X = Ay (1
where
_ 5 .
X(tl) 1 tl tl t
X(t.) 1t t.° m
2 2 2
X = s
A s
X(tn)/ .
2 m
S N
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But the y vector is unknown and must be determined; The

criteria of least squares requires one to choose constant

yl, y2, e e e ym, such that
n N

L= J (X(t.) - (y_ +y,t, + oyt M2 (2)
k=1 k o) 1 "k T m “k

is a minimum. Equation (2) fepresents the sum of the squares
of the vertical deviations from the fitted line. In terms

of equation (1), equation (2) is

L= (X-Ay)' (X - Ay)- ({77}
By using the gradient technique to minimize equation (3)
with respect to the choice of the vector y, one obtains the
the least squares choice for y, denote by y as,
§ = (ATa) tarx. | (4)(81)
Consequently one can now estimate X(t) at some other time
€ and the accuracy of this estimate will depend on the accuracy

of the original observations,
X(tl):.---, X(tn).
If the original observations have a known covariance matrix

P.o = EBI(X - E[X]) (X - E[X])"]

then the covariance matrix of § is

W = 1 -1 1 ' -1
Py (A" A) A PX ACA'" A) .

(5) {82}
Then from equations (4) and (5) the initial estimate and co-
variance matrix required by the Kalman filtering technique

can be obtained.

Suppose one has a linear system and an estimate of the
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state vector. The Kalman filter is basically a scheme to up-
date or improve the estimate of the state vector after a set
of new observations are taken.

Schmidt states the problem as:

"Given i(tl) = estimate of x,

P(tl) = E(x - x) (x - %)' = covariance matrix of the
error in the estimate,

y(ty) = Hx(t)) + a(ty), |

q(tl) = random error in measurement of y(tl),

E(Q(tl» = 0,

E(a(t;)a'(t]))

Q.

Find: a new estimate in(t) of x(tl) such that
L =E(x -x)'" (x - in) is minimiged." {85}

This formulation of the problem seems ihcomplete. In no
way does it bring in the fact that one is trying to update
the present estimate by using the information in a new set
of observations. The notation is conquing. For example,

(t)."

5>

the new estimate at time tl,is denoted by "

This article gives two derivations of the Kalman filter,

n

one assuming that the random variables are normally (Gaussian)
distributed and the second requires that the estimate be a
linear function of the observations (a linear filter).

The notation in derivation one is misleading.

For example,

L= f(x-x)" (x=-%)0p(x |y, x)dx, {86}

Ty



indicates that the state vector is a random variable with con-
ditional. probability density function p(x | y, x). The random
variable is actually the error x - X. |

The "results" are given in equations (6) and (7), that is;

% = % + PH' (HPH' + Q" (v - §), (6) 195)
where y = Hx and
| P_ = P - PH' (HPH' + Q)7 HP. (7) 199}
Equation (7) is the method for finding the covariance matrix
of the new estimate.

In the second derivation the development is straight for-
ward and requires mostly elementary statistics and matrix
theory.

The remainder of the material considered in this report
is an example which illustrate the use of the filtering equa-

tions, (6) and (7).
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Capabilities of MSFN for Apollo Guidance and Navigatioh, Sectilons

3.0, 3.1, and Appendixes A, B., Bissett-Berman Corp., [12].

The authors of these particular sections of the report
direct their attention toward a discussion and description of
the analytical techniques that are employed in statistical
filtering. They select as the avenue of approach the explan-
ation and critique of simple mathematical examples. The first
example is the estimating of the parameters of an "orbit"

y = a + bt, and the second example is the estimation of the
parameter a in a simple sine curve y = sin at.

The authors assume a variable y(t), dependent of time via
a known relationship that involvés unknown parameters. The
parameters are to be estimated using a sequence of n + 1
measurements, ym(t) t=0,1, ..., 1, that\contain errors or
"noise." The errors are assumed to be uncorrelated, have
zero mean, and form a stationary Gaussian process with
standard deviation o.

In the linear problem, y = a + bt, a straight
maximum likelihood technique is used to obtain the best
estimates for a and b as a function of the measured values.
The variances and covariance of these estimates are also de-
rived.

In a situation with two parameters, a and b, the maximum
likelihood values, a and b, are those that maximize the like-

lihood function p(a, b). Here
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L

1}

p(a, b)

1 exp(-% 1),
(2“fg1+%%n+l

in which
n

I [y (t) - y(£)1%/0
t£=0

2

{

In the example, y = a + bt, the estimates a and b of the
parameters a and b are found by taking partial derivatives of
the I_ function and determining the critical points. The
estimator equations are thus derived. The relationships
shown generate estimates with errors that have zero mean and
simple variances and covariance expressions. The mathematics
is straight forward.

The sine example is selected to illustrate the problems
of linear estimates employed in non-linear 'situations. Here
a nominal value a, is selected and an improved value, 2y is
desired. The best linear estimate is calculated and it is
demonstrated in appendix B that this value is not the maximum
likelihood value. In fact its accuracy is dependent on the
value of the original estimate and extensive data input will
not assure an approach to the desired value. The authors
conclude that successive iterations are needed to approach
the maximum likelihood value. Then the statement isvmade
that J P L and Goddard have found that three iterations have

been sufficient to bring the calculated values close enough

to the maximum likelihood values. The analysis of this example

is carried further to i1llustrate that the statistical uncer-
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taintities of the maximum likelihood estimates can be obtain-
ed without computing the maximum likelihood values.

In the second example there is one parameter, é, and the
likelihood function is then

o(a) 1 exp(-% L)
(2“)(n+1)/2 Gn+l

where | I

it
nNe~-s

[y (8) - y(£)1° /o°.
t

0
Again the derivative is calculated to arrive at the critical

point that will minimize i; and consequently maximize p(a).
This generatesan equation that is difficult to solve and a
linearization about an initial value a, of the parameter a 1s
employed. The linearized equation to be solved for the linear
best estimate is arrived at by substituting in the lower order
terms of the Taylor series expansion of the functions. This
estimate is used in the discussions of the pitfalls of the best
linear estimates. |

The authors conclude that'a best linear estimate scheme
does not give the desired maximum likellhood value. in partic-
ular they conclude that a good original estimate is needed in
order that the estimate will be reasonably accurate and a lin-
ear best estimate in a non-linear application is limited to
those cases in which a good a prior knowledge of the parameters
is availlable.

The body of appendix A is a derivation of the best linear

estimates arrived at via a Kalman approach and a linear least
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\ square analysis. Then a demonstration is given that the two
results are equivalent under a hypothesis that the state vari-

ables are independent of time.

In appendix\B the authors demonstrate that the linear best
estimate of the parameter, a, in the sine example is not the
correct value. The difference in the answers arises from the
fact that the actual and reference "trajectories“ diverge as
time increases.

In the derivation of the Kalman-Schmidt filter a fixed
reference trajectory is assumed and the filter is derived for
deviates about this reference. »The notation is essentially
standard with a few variations employed. That is, X is the
state vector of deviates from the reference trajectory, Yn

is the state vector of the deviates of the observables,

is the state transition matrix that updates the x

®
n+l,n n

vector to Mn relates Yy to X Qn is the covariance

*n+12
of the noise, and P; is the covariance matrix of the errors

in the estimated state x; and the state x . The derivation

of the filter equations is given via algebraic manipulations

and application of a "fundamental theorem." The fundamental theorem
is a variation of the widely used Gauss-Markov theorem that ex-
presses the minimum variance linear estimate, é, of B given o as

-1

B = ABa Au a

where ABa and Aa are covariance matrices associated with the

random variable vectors a and B.
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The basic technical idea involved is the 1inearizétion
of a non-linear problem and thus being able to apply linear
estimation theory. The authors are critical of this type of
application and\they devote most of their discussion to an
examination of its weaknesses. Their points should be well
taken, but the general hypotheses of this situation should
also be remembered. Any application of this tyﬁe will always
generate unsafe conclusions if the hypotheses are violated.

First of all, Kalman's original derivation is built of
the hypothesis of a linear dynamic model. The specific con-
clusion that Kalman gives is a minimum mean square error
estimate for the system as a function of the sequence of ob-
servables. The second consideration is that any lineariza-
tion of a non-linear system must be very cognizant of the
linearization process. The generalrapproach is to select a
reference relationship and investigate the deviates of the
actuals from the reference. In case the deviates are within

bounds, the deviates can b

D

expressed as a linear dynamic
system with the first order terms of the Taylor serieé ex-
pansions.

In general, one would have to assume that after some period
of time the actual and reference situations would vary away
from each other. Consequently the first order term approxi-
mations of the deviates would no longer be accurate. Thus
it is not the linear filter that is in error, it is the fact

that the deviates are too large to accurately apply only to the
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first order terms of the series. At this stage one must have

some sort of routine for selecting a new nominal.

should expect and will probably get inaccuracies.
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